Approximate Parameter Learning in Discriminative Fields

نویسنده

  • Sanjiv Kumar
چکیده

In this paper, we present an approach for approximate maximum likelihood parameter learning in discriminative field models, which is based on approximating true expectations with simple piecewise constant functions constructed using inference techniques. Gradient ascent with these updates shows interesting weak-convergence behavior which is tied closely to the number of errors made during inference. The performance of various approximations was evaluated with different inference techniques showing that the learned parameters lead to good classification performance so long as the method used for approximating the gradient is consistent with the inference mechanism. The proposed approach is general enough to be used for conditional training of conventional MRFs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Inference for Approximate Parameter Learning in Discriminative Fields: An Empirical Study

Estimation of parameters of random field models from labeled training data is crucial for their good performance in many image analysis applications. In this paper, we present an approach for approximate maximum likelihood parameter learning in discriminative field models, which is based on approximating true expectations with simple piecewise constant functions constructed using inference tech...

متن کامل

Discriminative Fields for Modeling Semantic Concepts in Video

A current trend in video analysis research hypothesizes that a very large number of semantic concepts could provide a novel way to characterize, retrieve and understand video. These semantic concepts do not appear in isolatation to each other and thus it could be very useful to exploit the relationships between multiple semantic concepts to enhance the concept detection performance in video. In...

متن کامل

Discriminative Learning of Sum-Product Networks

Discriminatively-trained probabilistic models often outperform their generative counterparts on challenging tasks in computer vision and NLP. Conditional random fields have been a predominant approach, but adapting them to richer structures further complicates learning with approximate inference [4]. Deep Networks have typically required both a generative and discriminative objective involving ...

متن کامل

Efficiently Learning Random Fields for Stereo Vision with Sparse Message Passing

As richer models for stereo vision are constructed, there is a growing interest in learning model parameters. To estimate parameters in Markov Random Field (MRF) based stereo formulations, one usually needs to perform approximate probabilistic inference. Message passing algorithms based on variational methods and belief propagation are widely used for approximate inference in MRFs. Conditional ...

متن کامل

On Learning Conditional Random Fields for Stereo Exploring Model Structures and Approximate Inference

Until recently, the lack of ground truth data has hindered the application of discriminative structured prediction techniques to the stereo problem. In this paper we use ground truth data sets that we have recently constructed to explore different model structures and parameter learning techniques. To estimate parameters in Markov random fields (MRFs) via maximum likelihood one usually needs to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004